skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Balasubramanian, Deepak"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The underlying factors that lead to specific strains within a species to emerge as human pathogens remain mostly enigmatic. The diarrheal disease cholera is caused by strains from a phylogenetically confined group within theVibrio choleraespecies, the pandemic cholera group (PCG), making it an ideal model system to tackle this puzzling phenomenon. Comprehensive analyses of over 1,840V. choleraegenomes, including environmental isolates from this study, reveal that the species consists of eleven groups, with the PCG belonging to the largest and located within a lineage shared with environmental strains. This hierarchical classification provided us with a framework to unravel the ecoevolutionary dynamics of the genetic determinants associated with the emergence of toxigenicV. cholerae. Our analyses indicate that this phenomenon is largely dependent on the acquisition of unique modular gene clusters and allelic variations that confer a competitive advantage during intestinal colonization. We determined that certain PCG-associated alleles are essential for successful colonization whereas others provide a nonlinear competitive advantage, acting as a critical bottleneck that clarifies the isolated emergence of PCG. For instance, toxigenic strains encoding non-PCG alleles of a)tcpFor b) a sextuple allelic exchange mutant for genestcpA,toxT,VC0176,VC1791,rfbT,andompU, lose their ability to colonize the intestine. Interestingly, these alleles do not play a role in the colonization of newly established model environmental reservoirs. Our study uncovers the evolutionary roots of toxigenicV. choleraeoffering a tractable approach for investigating the emergence of pathogenic clones within an environmental population. 
    more » « less
    Free, publicly-accessible full text available June 3, 2026